В США заложили основу для компактных квантовых чипов на ловушках ионов

Квантовые компьютеры в решении сложных задач обещают значительное превосходство над классическими суперкомпьютерами, но для этого им нужны высокая стабильность и масштабируемость. Это в полной мере относится к системам на ловушках ионов, особенно любимых российскими учёными. Исследователи из Массачусетского технологического института (MIT) нашли возможность повысить стабильность кубитов на ионах и сделать это в масштабе чипа.

Обзор ноутбука TECNO MEGABOOK S14 (S14MM): OLED с HDR как новая норма

Итоги 2025 года: интернет-индустрия

Итоги 2025 года: носимые устройства

Итоги 2025 года: смартфоны

Самые ожидаемые игры 2026 года

Итоги 2025 года: программное обеспечение

Итоги 2025 года: игровые видеокарты

Лучшие ИИ-сервисы и приложения 2025 года: боты одолевают

Итоги 2025 года: почему память стала роскошью и что будет дальше

Итоги 2025 года: компьютер месяца

Итоги 2025 года: процессоры для ПК

Лучшие игры 2025 года: выбор читателей и редакции

Итоги 2025-го: ИИ-лихорадка, рыночные войны, конец эпохи Windows 10 и ещё 12 главных событий года

Традиционные установки с ловушками ионов полагаются на громоздкое внешнее оптическое оборудование — так называемые оптические столы, что затрудняет реализацию масштабных платформ. Чтобы превзойти это ограничение, учёные из MIT и MIT Lincoln Laboratory разработали фотонные чипы, в которых оптические элементы для управления лазерами изготовлены непосредственно на поверхности микросхем. Более того, интегрированные оптические компоненты помогли на порядок сильнее охладить ионы и повысить стабильность кубитов, что определённо приближает созданием имеющих практическую ценность квантовых компьютеров.

В работе лазерных систем охлаждения существует такое фундаментальное ограничение, как предел Доплера. Лазерные импульсы в виде потока фотонов поглощаются ионами в ловушках, что снижает частоту их колебаний и энергию, а это и есть охлаждение, необходимое для минимизации ошибок при алгоритмической работе кубитов. При этом происходит спонтанное излучение фотонов ионами, что повышает температуру системы. Предел Доплера — это баланс между внешней накачкой, охлаждающей ионы, и внутренним саморазогревом системы. Новая разработка позволила в 10 раз опустить нижнюю границу этого предела, давая возможность сильнее охлаждать ионы в ловушках.

Технически это реализовано в виде изготовления на чипе наноразмерных оптических антенн. Эти антенны должны скрещивать два лазерных луча с разной поляризацией, чтобы на выходе получилось нечто вроде чередования фотонных вихрей. Это называется поляризационно-градиентным охлаждением, при котором колебания ионов в пространстве — потеря ими энергии и охлаждение — происходят намного интенсивнее, чем при прямом облучении. Ранее такое тоже практиковалось, однако реализация схемы на чипе повысила стабильность процесса и обещает более простую масштабируемость в будущем.

Ускоренное и глубокое охлаждение непосредственно на чипе уменьшает зависимость от внешней оптики, облегчает интеграцию большого числа кубитов и улучшает перспективы практического применения квантовых компьютеров. Исследователи планируют продолжить работу над оптимизацией таких систем, рассчитывая дойти до этапа создания квантовых процессоров на ловушках ионов.

Рейтинг статьи
( Пока оценок нет )
Понравилась статья? Поделитесь на своей стене!

Основатель и идеолог журнала, по совместительству автор статей на историческую тему. Закончил СЛИ (филиал СПбГЛТА им. Кирова) в 2012 году. Подробнее о команде проекта.

Mental Sky
Добавить комментарий