- Итоги 2025 года: почему память стала роскошью и что будет дальше
- Обзор игрового QD-OLED WQHD-монитора Gigabyte AORUS FO27Q5P: на пределе возможностей
- Обзор игрового 4K IPS-монитора Gigabyte M27UP: разнообразия ради
- Обзор телевизора Sber SDX-43U4169
- Итоги 2025-го: ИИ-лихорадка, рыночные войны, конец эпохи Windows 10 и ещё 12 главных событий года
- Обзор ноутбука TECNO MEGABOOK S14 (S14MM): OLED с HDR как новая норма
Простой нагрев воды в солнечном коллекторе на крыше не позволяет запасать тепло надолго. Было бы отлично нагреть теплоноситель летом, а расходовать зимой. Именно к этому стремятся разработчики систем накопления тепла на основе молекулярной тепловой инверсии, когда под действием света молекула впитывает энергию, а затем контролируемо её отдаёт. В этой области долго не было прорывов, но теперь наша ДНК подсказала верное направление.
Итоги 2025 года: почему память стала роскошью и что будет дальше
Обзор игрового QD-OLED WQHD-монитора Gigabyte AORUS FO27Q5P: на пределе возможностей
Обзор игрового 4K IPS-монитора Gigabyte M27UP: разнообразия ради
Обзор телевизора Sber SDX-43U4169
Итоги 2025-го: ИИ-лихорадка, рыночные войны, конец эпохи Windows 10 и ещё 12 главных событий года
Обзор ноутбука TECNO MEGABOOK S14 (S14MM): OLED с HDR как новая норма
Исследователи из Университетов Калифорнии в Санта-Барбаре и в Лос-Анджелесе разработали производное 2-пиримидона — соединения, родственного тимину в составе ДНК. Идея заимствована из природного процесса: ультрафиолетовое излучение вызывает в ДНК повреждения, которые могут превращаться в высокоэнергетические изомеры Дьюара. И если у человека это может привести к онкологии, то в системе накопления тепла — это просто способ запасти энергию на длительный период. В организме такие повреждения восстанавливаются специальным ферментом, а в технических системах энергия высвобождается с помощью катализаторов.
Синтезированная исследователями молекула поглощает ультрафиолетовый свет в диапазоне UV-A и UV-B (примерно 300–310 нм). Возникающий при этом изомер отличается высокой стабильностью — его период полураспада достигает 481 дня при комнатной температуре. Это позволяет хранить энергию месяцами без значительных потерь: накопить её жарким июлем и расходовать в январе.
Жидкая при комнатной температуре молекула хорошо растворяется в воде, не требует токсичных органических растворителей и в экспериментах выдержала 20 циклов заряда/разряда с минимальной деградацией. Созданные до этого молекулярные теплоносители требовали токсичных растворителей и поэтому теряли плотность запасаемой энергии, тогда как жидкая природа новой молекулы позволяет использовать её в неразбавленном виде. Впрочем, она растворяется в воде, что делает её легко удаляемой, например, в случае протечек в домашних условиях.
Процесс разрядки — выделения запасённого тепла — запускается добавлением кислотного катализатора. Тепло уходит в теплообменник и обогревает дом. Но пока в этом кроется минус: добавление катализатора разбавляет теплоноситель и снижает плотность накопления энергии. Учёным ещё предстоит решить эту проблему, чтобы катализатор оставался отделённым от основного объёма.
Тем не менее полученные в опытах рекордные характеристики делают разработку выдающейся: плотность хранимой энергии достигает 1,65 МДж/кг, что почти вдвое превышает показатели литийионных аккумуляторов (менее 1 МДж/кг) и значительно превосходит предыдущие молекулярные материалы (норборнадиен — 0,97 МДж/кг, азоборинин — 0,65 МДж/кг). Это открывает перспективы для компактного сезонного хранения солнечного тепла, особенно для отопления зданий: жидкость может циркулировать через солнечные коллекторы на крыше, заряжаться, храниться в резервуарах в подвалах и по мере необходимости пропускаться через катализатор для передачи тепла в систему отопления или горячего водоснабжения.
Предложенный подход позиционируется как экологичная альтернатива традиционному топливу для зимнего периода. Несмотря на впечатляющие результаты, технология имеет ограничения, препятствующие немедленному коммерческому внедрению. Молекула использует лишь около 5 % солнечного спектра (только узкий диапазон УФ), не реагируя на видимый свет и инфракрасное излучение, а квантовая эффективность превращения остаётся низкой (реагируют лишь несколько фотонов из каждых 100), что требует длительного облучения. Кроме того, применение кислотного катализатора усложняет систему и требует дополнительных шагов для его нейтрализации. Авторы подчёркивают необходимость дальнейших улучшений — расширения спектра поглощения и упрощения механизма разрядки, — чтобы сделать технологию практически применимой в реальных условиях.
